Prof. Ailong Ke, molecular biology and genetics, discovers the relationship between a family of proteases caspases and CRISPR, revolutionizing the way we understand gene editing technology.
Apocalyptic movies often cast a dark view of the future of gene editing. In reality though, improved gene editing methods could be used to treat cancer, hepatitis B and other diseases. Though the technology is still in its nascent stages, new research out of the lab of Prof. Joseph Peters, microbiology, sheds light on new mechanisms that could be exploited to carry out more robust gene editing. Peters’ team found that transposons, or ‘jumping genes’, use a bacterium’s primary defense mechanism, CRISPR-Cas, to efficiently jump within the genome. Jumping genes are sequences of DNA that can change their positions within the genome.