Cornell Researchers Train Physical Systems, Revolutionize Machine Learning

A Cornell research group led by Prof. Peter McMahon, applied and engineering physics,has successfully trained various physical systems to perform machine learning computations in the same way as a computer. The researchers have achieved this by turning physical systems, such as an electrical circuit or a Bluetooth speaker, into a physical neural network — a series of algorithms similar to the human brain, allowing computers to recognize patterns in artificial intelligence. Machine learning is at the forefront of scientific endeavors today. It is used for a host of real-life applications, from Siri to search optimization to Google translate. However, chip energy consumption constitutes a major issue in this field, since the execution of neural networks, forming the basis of machine learning, uses an immense amount of energy.