While cryogenics is often depicted as a scientifically fictitious, Hollywood creation, Kieran Loehr ’20 and peer researchers in the lab of Prof. Robert Thorne, physics, are collaborating to make bio preservation an easy and affordable process. According to Loehr, freezing humans to be resuscitated in 100 years is not a foreseeable feat, but improving freezing techniques for commercial use, like sperm and egg cryopreservation and biomaterial storage for research purposes, is the lab’s primary goal. “Tissues, which are composed of membrane bound cells, are particularly delicate and the harsh process of freezing can cause them to rupture and incur damage,” Loehr said. This happens when the molecules of a slowly cooling liquid rearrange into rigid, crystalline structures and disrupt cell membranes. However, according to Loehr, “if the rate at which the freezing process takes place is increased to 600,000 kelvin/sec, biological damage can be avoided due to glass formation.” Glass is a term used to describe a frozen solid composed of molecules that are arranged as if in liquid state.