Current members of 2018 Cornell iGEM team gather in front of Weill Hall.

Project Team Spotlight on Cornell iGEM: Furthering Synthetic Biology Research

Biological engineering is a up-and-coming area of research with broad applications ranging from protein engineering to prosthetics. And here at Cornell, a group of students are working — and competing — to develop biological engineering solutions to solve a diverse set of scientific challenges. Cornell’s branch of the International Genetically Engineered Machine is a multidisciplinary undergraduate research project team comprised of more than 40 students from four colleges at Cornell. The Cornell iGEM team, supervised by Prof. Jan Lammerding, biomedical engineering, builds projects that solve real-world problems with a heavy emphasis on synthetic biology — a branch of biological engineering that aims at the redesign of biological systems that do not already exist in the natural world. Members of Cornell iGEM compete against hundreds of other iGEM teams from around the globe each year in the iGEM Giant Jamboree, an international synthetic biology competition held in Boston.

Cornell Lab Discovers New Regulatory Mechanism of Protein, Sheds Light on Importance of Cornell’s High Energy Synchrotron Source

Proteins are strikingly complex macromolecules, which control every aspect of molecular function in all living organisms, making them an interesting research target. The Ando Lab studies the structure of proteins, specifically enzymes, in order to understand their function, using structural techniques like x-ray diffraction and small-angle x-ray scattering. These techniques allow for the visualization of atomic and molecular structure of proteins. Small-angle x-ray scattering is a technique used to study the structure of proteins in solution. SAXS maintains an advantage over other techniques because it allows for the understanding of the movement of proteins; however a caveat to SAXS is its lower resolution, creating the need for combinatorial approaches to studying proteins such as combining SAXS with chromatography.